tabsdata.BigQueryDest
- class BigQueryDest(
- conn: BigQueryConn,
- tables: str | list[str] | None = None,
- if_table_exists: Literal['append', 'replace'] = 'append',
- schema_strategy: Literal['update', 'strict'] = 'update',
Bases:
DestinationPluginBigQuery based data outputs. The data is first stored in parquet files in a GCS bucket, and then loaded into the BigQuery tables.
- __init__(
- conn: BigQueryConn,
- tables: str | list[str] | None = None,
- if_table_exists: Literal['append', 'replace'] = 'append',
- schema_strategy: Literal['update', 'strict'] = 'update',
Initializes the BigQueryDest with the configuration desired to store the data.
- Parameters:
conn – The BigQuery connection configuration.
tables – The table(s) to store the data in. If multiple tables are provided, they must be provided as a list. If None, the table names will be those of the input tables for the function. Defaults to None.
if_table_exists –
The strategy to follow when the table already exists.
‘append’ will append to an existing table.
‘replace’ will create a new table, overwriting an existing one. Defaults to ‘append’.
schema_strategy –
The strategy to follow for the schema when the table already exists.
‘update’ will update the schema with the possible new columns that might exist in the TableFrame.
‘strict’ will not modify the schema, and will fail if there is any difference. Defaults to ‘update’.
Methods
__init__(conn[, tables, if_table_exists, ...])Initializes the BigQueryDest with the configuration desired to store the data.
chunk(working_dir, *results)Trigger the exporting of the data to local parquet chunks.
stream(working_dir, *results)Trigger the exporting of the data.
write(files)Given a file or a list of files, write to the desired destination.
Attributes
connif_table_existsThe strategy to follow when the table already exists.
schema_strategyThe strategy to follow when appending to a table with an existing schema.
tables